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A yield condition for concrete under moderate hydrostatic pressure is proposed as a nine-
parameter extension of the Lubliner yield criterion. The modification is introduced to both
meridional and deviatoric cross-sections. Singularities are eliminated by means of a regula-
risation parameter of a clear geometrical interpretation. Calibration is carried out resulting
in analytical formulae for the parameters depending on experimental data for five characte-
ristic tests. A comparison with experimental data available in literature is drawn, showing
consistency between the yield criterion and the test results. Convexity requirements for the
proposed function are determined, leading to limitations on the input data.
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1. Introduction

Designing of yield conditions and plastic potentials suitable for concrete is an outgoing research.
Two significant aspects are to be taken into consideration in the process. The yield condition
should fit experimental results (Kupfer et al., 1969; Mills and Zimmerman, 1970; Gabet et al.,
2008), which suggest several key features to be reproduced by theoretical models (Ottosen,
1977; Bigoni and Piccolroaz, 2004). The accurate description of the data requires quite complex
functions. On the other hand, clarity or even simplicity is desired, especially when it comes
to interpretation of material parameters and further numerical implementation. A proper yield
function for concrete ensures keeping the balance between those two conditions. In this paper,
we introduce an extension of the Lubliner yield function, which improves its flexibility, leaving
the overall shape of the yield surface unchanged.

Experimental data indicate that continuous and convex functions of three independent in-
variants of the stress tensor properly describe the appearance and development of plastic flow.
However, the data are not conclusive on differentiability, some singular points or lines are allo-
wable (Bigoni and Piccolroaz, 2004). Generally, the assumption of isotropic behaviour is valid
for concrete at failure. As to the specifics, the shape of meridians is non-linear and often model-
led by a parabola or a hyperbola, although it is not possible to accurately describe the whole
range of available experimental results by a single second-order curve. Moreover, the deviatoric
cross-section of the yield surface tends to change from nearly triangular to nearly circular as the
confinement increases (Ottosen, 1977).

The mechanism of failure of concrete strongly depends on the state of stress, more precisely
on the signs of principal stresses (Kupfer et al., 1969; Mills and Zimmerman, 1970). For the
states of pure tension (σ3 > 0) and mixed tension and compression (σ1σ3 < 0), the failure
occurs by cleavage fracture. The main crack is perpendicular to the direction of the maximum
principal stress σ1. In the case of pure compression (σ1 < 0), shear decohesion is the primary

1This work is related to a paper presented at PCM-CMM-2019.



326 A. Szwed, I. Kamińska

cause of destruction of the material. The mode of fracture is mixed when the stress state is near
the points of σ1 = 0. Thus, the equation σ1 = 0 establishes the transition zone between those
two mechanisms. It is evident that the two types of behaviour should be reflected in the yield
and failure criteria. Basically, it can be done by combining two surfaces of different slopes in the
meridional planes, which is the idea used by Lubliner et al. (1989).
The proposed yield condition is a regularisation of the strength criterion of Lubliner (Lubliner

et al., 1989; Abaqus 6.11 Theory Manual, 2011) consisting of two cones with almost triangular
deviatoric cross-sections in the Haigh-Westergaard stress space. The two-surface criterion with
six parameters introduced by Lubliner allows for separate shaping of the yield condition in the
triaxial compression zone and in the zone where at least one principal stress is positive, which
complies with experimental data, as mentioned above. In this way, material hardening/softening
can be conveniently incorporated into the model independently for both zones, using a simple
analytical calibration process. Those advantages are preserved in our modification of the condi-
tion, but calibration becomes more complicated due to introduction of several new parameters.
The Lubliner yield function possesses discontinuities of gradient on the curve of the null maxi-
mum principal stress and along tensile and compressive meridians. Those unfavourable features
result from non-smooth intersection of two cones and the applied singular deviatoric shape func-
tions. At the expense of an increase of the number of parameters, in the presented yield criterion
the singularities are eliminated with the exception of the apex of the yield surface.

In order to remove the singularities of the yield function gradient along the tensile and
compressive meridians, smooth shape functions and an additional regularisation parameter,
specifically responsible for smoothening the surface in the vicinity of the null maximum principal
stress curve, are introduced. One of the classical most widely recognised shape function proposed
by Ottosen (1977) and its later generalisation by Podgórski (1984) are considered. As mentioned,
the singularity at the apex (equal triaxial tension) remains. This disadvantage can be removed
as well by the employment of a second regularisation parameter (Szwed and Kamińska, 2017),
but it is not presented here.

In the following Sections, we describe the proposed criterion and show its graphical repre-
sentation. Calibration of the model being focused on application in the plasticity and damage
theory is discussed extensively, also including restrictions resulting from convexity requirements.
Closed formulae for nine (or seven for a simplified version) parameters are derived, suitable for
introduction of hardening/softening functions. We check the consistency of the criterion predic-
tion with available empirical data for concrete. Comparison with similar yield criteria is carried
out in order to show the flexibility of the proposed surface.

2. Definition of the modified yield condition

The cylindrical invariants ξ, r and Θ of the stress tensor σ are defined as

ξ =
1√
3
trσ r = ‖s‖ =

√
trs2 Θ =

1

3
arccos

√
6 tr s3√
tr 3s2

(2.1)

and s = σ − ξk, k = I/
√
3, where I is the second order unit tensor and tr denotes trace of a

second order tensor.

We propose the following yield criterion

f(ξ, r,Θ) = 2ξ+
√

4B2 + [(β1 − α1gr)− (β2 − α2hr)]2−(β1−α1gr)−(β2−α2hr) = 0 (2.2)

uniquely separating the safe from unsafe stress states. α1, α2, β1, β2 and B are material para-
meters, whereas g and h are deviatoric section shape functions of Podgórski (1984)
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g(Θ) = cos
arccos(γ1 cos 3Θ)− arccos δ1

3
h(Θ) = cos

arccos(γ2 cos 3Θ)− arccos δ2
3

(2.3)

with values in the range 1/2 ¬ g(Θ) ¬ 1 and 1/2 ¬ h(Θ) ¬ 1. When g(Θ) ≡ 1 and h(Θ) ≡ 1,
a rotational surface consisting of combined two Drucker-Prager (1952) cones is obtained. For
δ1 = δ2 = 1, the shape functions of Ottosen (1977) are retrieved. If γ1 = γ2 = 1, the generalised
shape functions for the Coulomb-Mohr condition are derived, and the surface defined by Eq.
(2.2) has edges along the tensile, shear and compressive meridians, compare Szwed and Kamińska
(2019).

Functions g and h dependent on the Lode angle Θ determine the shape of deviatoric cross-
sections of the yield locus. The first function describes the deviatoric shape predominately in
the tension zone with at least one principal stress positive, whereas the second rules the com-
pression zone with all principal stresses negative. As a result, the curve f(ξ, r,Θ) = 0 for fixed
ξ is periodic of period 2π/3 with the axes of symmetry described by Θ = kπ/3 for k = 0, 1, 2.
Invariant cos 3Θ is used in the definition of the shape functions to preserve those symmetries
(Jemioło and Szwed, 1999).

Parameters α1, β1, γ1, δ1 and α2, β2, γ2, δ2 are material constants associated with the tension
and compression cone, accordingly

ξ + α1rg(Θ)− β1 = 0 ξ + α2rh(Θ)− β2 = 0 (2.4)

Depending on the assumed form of the shape functions, eight (for the Podgórski shape
functions) or six (for the Ottosen shape functions) parameters are determined using typical
experimental tests. The role of the ninth (seventh) parameter B in Eq. (2.2) is to smoothen the
intersection zone of those cones. Its value here is chosen arbitrarily, but can be determined via
a curve fitting technique.

Function (2.2) is convex if the meridians are convex, and the following requirements for
convexity of positive shape functions g and h are met (Bigoni and Piccolroaz, 2004)

g(Θ) + g′′(Θ)  0 and h(Θ) + h′′(Θ)  0 (2.5)

Based on those conditions, the following inequalities have to be satisfied for the material para-
meters in functions (2.3)

α2  α1 > 0 β2  β1 > 0 |γ1| ¬ 1 |δ1| ¬ 1
|γ2| ¬ 1 |δ2| ¬ 1 B  0

(2.6)

3. Calibration of parameters

Material parameters α1, β1, γ1, δ1 and α2, β2, γ2, δ2 are calibrated based on five commonly used
experimental tests listed in Table 1. Two of them are located on the tensile meridian (Θ = 0),
namely the uniaxial tension test and the equibiaxial compression test, the next two – on the
compressive meridian (Θ = π/3) – the uniaxial compression test and the triaxial compression
test and the last one on the shear meridian (Θ = π/6). In the case of Ottosen or Coulomb-Mohr
criteria, only four tests are needed. Parameter B is left to be chosen arbitrarily with specification
of recommended values.

The intersection curve of two cones (2.4) is defined by the condition

α1grK − β1 = α2hrK − β2 (3.1)



328 A. Szwed, I. Kamińska

Table 1. Experimental tests used for calibration

Principal Uniaxial Uniaxial Biaxial Triaxial Biplane
stresses, tension compression compression compression shear
invariants σT σC σBC σTC , η > 1 σBS

σ1 σT 0 0 −σTC 0

σ2 0 0 −σBC −σTC −σBS/2
σ3 0 −σC −σBC −ησTC −σBS
ξ ξT =

σT√
3

ξC = −σC√3 ξBC = −2σBC√3 ξTC = −σTC 2+η√3 ξBS =−σBS
√
3
2

r rT =σT
√

2
3 rC =σC

√

2
3 rBC =σBC

√

2
3 rTC =σTC(η − 1)

√

2
3 rBS = σBS

1√
2

Θ 0 π/3 0 π/3 π/6

which used in Eq. (2.2) leads to the equation

2(ξK +B)− (β1 − α1grK)− (β2 − α2hrK) = 0 (3.2)

Solution to the set of Eqs. (3.1) and (3.2) is a parametric definition of the following curve

rK(Θ) =
β2 − β1
α2h− α1g

ξK(Θ) =
β1α2h− β2α1g
α2h− α1g

−B (3.3)

where angle Θ is the parameter. For B = 0, the formulae define the intersection curve for cones
(2.4) denoted as rKC(Θ), ξKC(Θ). Then, parameter B has a clear geometrical interpretation
shown in Fig. 1. In the meridional cross-section of the proposed surface B defines a shift of curve
(3.3) in the direction of invariant ξ from the intersection curve of cones (2.4). Coordinates r are
the same for both curves.

Fig. 1. Interpretation of B parameter in the meridional cross-section of the yield surfaces

Using Eqs. (3.1) in (3.2) twice, the following results can be derived

ξK +B = β1 − α1rKg(Θ) ξK +B = β2 − α2rKh(Θ) (3.4)

Equations (3.4) are very convenient for calibration of the free parameters. It is assumed that
experimental tests carried out in the plane stress conditions are located on curve (3.3), so at the
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same time Eqs. (3.4) are fulfilled. This feature allows one to obtain closed forms formulae for
the searched parameters.

Denoting by gT , gC , gS and hT , hC , hS values of shape functions (2.3) for the characteristic
meridians, we obtain the relations

gT = g(0) = cos(ψ1 − χ1) gS = g
(π

3

)

= cos
(π

6
− χ1
)

gC = g
(π

3

)

= cos
(π

3
− ψ1 − χ1

)

hT = h(0) = cos(ψ2 − χ2)

hS = h
(π

6

)

= cos
(π

6
− χ2
)

hC = h
(π

3

)

= cos
(π

3
− ψ2 − χ2

)

(3.5)

where additional notations are introduced

ψ1 =
1

3
arccos γ1 ψ2 =

1

3
arccos γ2 χ1 =

1

3
arccos δ1 χ2 =

1

3
arccos δ2

(3.6)

Using Eqs. (3.5) and the ratios of the characteristic values of the shape functions defined as

p =
gT
gC

q =
hT
hC

k =
gT
gS

t =
hT
hS

(3.7)

where gT , gC , gS and hT , hC , hS are expressed via p, q and k, t parameters as follows

gS =

√

4p2 − k2(1 + p)2
4p(p− k2) gT = kgS gC =

k

p
gS

hS =

√

4q2 − t2(1 + q)2
4q(q − t2) hT = thS hC =

t

q
hS

(3.8)

and using trigonometric identities, the deviatoric cross-section shape parameters γ1, γ2 and δ1, δ2
can be found as functions of p, q and k, t, i.e.

γ1 =
k2(1 + p)2 − p2

2p3

√

4p2 − k2(1 + p)2 γ2 =
t2(1 + q)2 − q2

2q3

√

4q2 − t2(1 + q)2

δ1 =
k(p− 1)[3p2 − k2(p2 + p+ 1)]

2
√

[p(p− k2)]3 δ2 =
t(q − 1)[3q2 − t2(q2 + q + 1)]

2
√

[q(q − t2)]3
(3.9)

Obtained results (3.9) are supposed to meet the following restrictions

1 ¬ p ¬ 2 1 ¬ q ¬ 2 and
√
3p

1 + p
¬ k ¬ p

√

p2 − p+ 1

√
3q

1 + q
¬ t ¬ q

√

q2 − q + 1
(3.10)

which are equivalent to convexity requirements (2.6) limited to

0 ¬ γ1 ¬ 1 0 ¬ γ2 ¬ 1 and 0 ¬ δ1 ¬ 1 0 ¬ δ2 ¬ 1 (3.11)

The limits on p and q parameters follow their range reported in experiments for concrete and
frictional materials (Ottosen, 1977; Podgórski, 1984). Graphical representation of restrictions
(3.10) as shaded regions and contours for parameters γ1, γ2, δ1, δ2 according to Eqs. (3.9) are
shown in Fig. 2.
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Fig. 2. Limits for parameters p, q, k, t due to convexity requirements, where O stands for Ottosen and
CM for Coulomb-Mohr shape functions

Using values of the stress invariants from Table 1, notation (3.7) in relations (3.4), the
following can be obtained

α1 =
ξC − ξBC

gC(prBC − rC)
β1 = B +

pξCrBC − ξBCrC
prBC − rC

α2 =
ξC − ξBC

hC(qrBC − rC)
β2 = B +

qξCrBC − ξBCrC
qrBC − rC

k =
prBS(ξC − ξBC)

prBC(ξC − ξBS) + rC(ξBS − ξBC)
t =

qrBS(ξC − ξBC)
qrBC(ξC − ξBS) + rC(ξBS − ξBC)

(3.12)

The parameters p and q are still undetermined.
Eliminating the square root, Eq. (2.2) can be transformed into the form

[α1gr − (β1 − ξ)][α2hr − (β2 − ξ)] = B2 (3.13)

which is used for calibration of the two remaining parameters. One of roots of this quadratic
equation defines criterion (2.2). Application of Eq. (3.13) to the cases of uniaxial tension and
triaxial compression tests yields the following formulae for parameters

p =
βTλC − βCλT −

√

(βTλC − βCλT )2 + 4(βCδT + βT δC)(δCλT + δTλC)
2(βCδT + βT δC)

q =
βTλC − βCλT +

√

(βTλC − βCλT )2 + 4(βCδT + βT δC)(δCλT + δTλC)
2(βCδT + βT δC)

(3.14)

with additional notations

βT = aT (aT − 2BrBC) δT = B(aT rC + bT rBC)− aT bT λT = bT (bT − 2BrC)
βC = bC(bC + 2BrBC) δC = B(bCrC + aCrBC) + aCbC λC = aC(aC + 2BrC)

(3.15)

and

aT = (ξC − ξBC)rT + (ξT − ξC)rBC bT = (ξT − ξBC)rC
aC = (ξBC − ξTC)rC + (ξC − ξBC)rTC bC = (ξC − ξTC)rBC

(3.16)

As an option, calibration simplified compared to (3.14) can be regarded. The parameter q
is assumed or calculated from Eq. (3.13) for B = 0, which means that the point representing
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the triaxial compression test lays in the vicinity of the yield surface (but does not belong to it
exactly). This assumption yields

qS =
(ξBC − ξTC)rC + (ξC − ξBC)rTC

(ξC − ξTC)rBC
then pS = −

δT qS + λT
βT qS + δT

(3.17)

Notations (3.15) are still valid and results (3.12) are the same.

4. Results and discussion

Eight material parameters α1, β1, γ1, δ1 and α2, β2, γ2, δ2 are calculated based on five tests as
described in the previous Section, whereas the parameter B is arbitrary. Typical strength ratios
for concrete available in literature (Kupfer et al., 1969; Mills and Zimmerman, 1970; Gabet et
al., 2008) are

σT = 0.1σC σBC = 1.16σC σBS = 1.28σC

σTC = 1.25σC η = 4.91
(4.1)

The data for σTC and η can be estimated from various experiments (various locations of ξTC)
and the results can differ significantly, which is discussed in the second part of this Section. The
yield limit in the uniaxial compression test σC is treated as a scaling factor in the following
graphical presentations of the results. Calculations for several values of B = αBσT = 0.1αBσC
are performed. The obtained values of the parameters are presented in Table 2.
Inevitably, a change in the value of B influences the whole yield surface. Although, as it turns

out, the impact on the tension cone (on α1, β1, γ1, δ1) is greater than on the compression cone
(on α2, β2, γ2, δ2). Qualitatively, the increase of B implies “sharpening” of the corners of the
rounded hexagonal deviatoric section in the tension zone, whereas “blunting” of the corners in the
compression zone. The surface vertex changes its location ξV = [(β1+β2)−

√

4B2 + (β2 − β1)2]/2
(see Fig. 1) with a change of B as well. We recommend rather small values of B, which limits its
influence on the shape of the yield surface to the transition zone and the location of the apex.

Table 2. Material parameters for typical experimental data (4.1) and the assumed B

Parameter B = 0 B = 0.5σT B = σT B = 1.5σT B = 2σT

p 1.7188 1.7757 1.8263 1.8724 1.9154

k 1.1256 1.1321 1.1376 1.1424 1.1467

γ1 0.9884 0.9932 0.9962 0.9980 0.9992

δ1 0.9902 0.9943 0.9968 0.9984 0.9993

α1 1.6144 1.5639 1.5240 1.4912 1.4632

β1/σC 0.1895 0.1917 0.2040 0.2229 0.2464

q 1.4412 1.4350 1.4291 1.4236 1.4184

t 1.0881 1.0871 1.0862 1.0853 1.0845

γ2 0.9307 0.9283 0.9261 0.9239 0.9218

δ2 0.9376 0.9354 0.9333 0.9312 0.9292

α2 2.0024 2.0155 2.0280 2.0400 2.0516

β2/σC 0.5570 0.6194 0.6813 0.7426 0.8036

Results of the simplified calibration based on Eqs. (3.17) are presented in Table 3. For the
compression zone, α2, β2, γ2, δ2 are calculated as for cone (2.4)2. Then α1, β1, γ1 and δ1 are
computed for the assumed value of B. The estimated values are the following: qS = 1.4412,
tS = 1.0881, then γ2 = 0.9307, δ2 = 0.9376, α2 = 2.0024 and β2 = 0.5570σC regardless of B, and
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the remaining parameters are given in Table 3. Note that for B ∼= σT = 0.1σC , the parameters
are obtained with an error of the order 0.2% comparing to Table 2. This approach to calibration
can be successfully used in practice.

Table 3. Material parameters for typical data and the assumed B for simplified calibration

Parameter B = 0 B = 0.5σT B = σT B = 1.5σT B = 2σT

p 1.7188 1.7755 1.8246 1.8675 1.9054

k 1.1256 1.1321 1.1374 1.1419 1.1457

γ1 0.9884 0.9932 0.9961 0.9979 0.9990

δ1 0.9902 0.9943 0.9967 0.9982 0.9992

α1 1.6144 1.5641 1.5253 1.4945 1.4795

β1/σC 0.1895 0.1919 0.2052 0.2261 0.2524

The proposed yield condition is not able to accommodate every set of five test results because
of the cosine and arccosine expressions appearing in the shape functions, which put restraints
on their arguments as well as on their values. It is possible that the yield surface cannot be
“stretched” or “bent” to pass through the points representing one or more of the calibrating
tests. The limits on parameters must be carefully checked due to convexity requirements (2.6),
since those conditions can be violated for given experimental data or the assumed value of B.
Then formulae (3.12), (3.14)-(3.17) can produce imaginary numbers, which is impracticable. For
example, in Fig. 3, a graph of function p(B) is shown, which passes through the limit value
p = 2 when B = 0.30625σC . Therefore, the convexity condition for the given data is violated
for B > 0.30625σC . The shape parameter k(B) is presented in the second graph with the upper
and lower limits set in Eqs. (3.10), with the exactly same value of B causing loss of convexity.
In the third graph, the shape parameter t(B) is shown exhibiting no problems with convexity
in the given range of B.
However, for typical proportions of the yield limits for concrete and B ∼ 0.2σC (and lower),

the convexity conditions are usually met, when the calibrating triaxial test of a moderate ξTC
is chosen. Primarily, the restraints apply to uncommon ratios αT = σT /σC , αBC = σBC/σC ,
αBS = σBS/σC or αTC = σTC/σC (and η), which can occur during kinematic hardening.

Fig. 3. Dependence of p, q and k, t on the assumed values of B

Three-dimensional views of the criterion in the principal stresses and the three-dimensional
representation of the surface for the plane stress in the stress component space are shown in
Fig. 4.
In Fig. 5, the characteristic meridians are shown along with the points used in calibration as

well as the deviatoric and plane stress cross-sections. A change in the meridian slope is visible
when passing through the transition zone (the curve containing σC , σBC and σBS , see Fig. 4).
The distinction between the two cones is clear for all the presented meridians, although it is
most significant for the compressive meridian. The shape of the deviatoric cross-section changes
from nearly triangular, with sharp corners for a low confinement, to rounded hexagons for a
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Fig. 4. Three-dimensional view of the strength criterion with marked calibration points in the principal
stresses (left), apex zone with calibration curve (central), and for the plane stress in components (right),

B = σT = 0.1σC

Fig. 5. Cross-sections of the yield surface: tensile, shear and compressive meridians with marked
calibration points (left); shape of deviatoric cross-sections of the plasticity surface for ξ equal to: 1) ξC ,
2) ξBC , 3) 4ξC , 4) 6ξC , 5) ξTC , 6) 12ξC , σi = σi

√

2/3 (centre); the plane stress yield curve (σ3 = 0) in
comparison with criteria based on the Ottosen and Coulomb-Mohr shape functions (right),√

2 ξ = σ1 + σ2, 2r
2 = (σ1 − σ2)2, B = σT = 0.1σC

high confinement. The proposed plane stress yield curve (σ3 = 0) is located between the limiting
curves for the Ottosen and Coulomb-Mohr shape functions in the transition zone.

Next, in Fig. 6, cross-sections of the plasticity surface for constant values of one principal
stress are presented. The curves illustrate basic features of the criterion when it changes from
tensile to compressive zones.

The choice of the exact location of the triaxial compression test used in calibration influences
strongly the overall shape of the yield surface, particularly the compressive cone, i.e. slope α2
and β2, γ2, δ2, see Table 4. Obviously, it has a considerable impact on the plane stress cross-
-section as it is depicted in Fig. 7. Choosing triaxial tests of lower ξ smoothens the curves in the
biaxial compression zone.

Comparison with the experimental data of Kupfer et al. (1969), Mills and Zimmerman (1970)
and Gabet et al. (2008) indicates that for a low-compression regime, it is suitable to use the
triaxial test located at ξTC ∼ (−4÷−2)σC , whereas for a high-compression zone, it is appropriate
to use a test corresponding to a much lower ξTC . From the available data, we recommend to
use the following values of the parameters: αTC = 0.2600 and η = 9.4976 (ξTC = −1.726σC) for
the low-compression zone, but αTC = 12.3778 and η = 2.8555 (ξTC = −34.670σC ) for the high-
-compression zone, see Figs. 8 and 9. Then the adjustment of the meridians is best. For the plane-
stress cross section, the last recommended set of values is the most suitable (ξTC = −34.670σC ),
although the other triaxial test also complies with the experimental data, see Fig. 10.
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Fig. 6. Plasticity surface cross-sections for fixed σ3 for tension zone (left): 1) σ3 = 0.98σT , 2) 0.85σT ,
3) 0.6σT , 4) 0.3σT , 5) 0; and compression zone (right): 1) 0, 2) −0.2σC , 3) −0.4σC , 4) −0.7σC, 5) −σC ,

B = σT = 0.1σC

Table 4. Material parameters for typical data: αT = 0.1, αBC = 1.16, αBS = 1.25 and the
assumed B = 0.2σC for various locations of the triaxial compression test (Mills and Zimmerman,
1970; Gabet et al., 2008)

η αTC ξTC/σC α1 α2 β1/σC β2/σC γ1 δ1 γ2 δ2

2.8555 12.378 −34.700 1.4331 2.4578 0.2179 1.1849 0.9999 0.9995 0.8909 0.8052
2.8347 6.7222 −18.734 1.4304 2.5214 0.2153 1.2447 0.9999 0.9995 0.8828 0.7886
4.7959 1.0889 −4.2724 1.4567 2.1116 0.2402 0.8592 0.9995 0.9998 0.9357 0.8924
9.4959 0.2600 −1.7259 1.4826 1.9216 0.2647 0.6799 0.9988 0.9676 0.9596 0.9351
15.071 0.1297 −1.2783 1.5078 1.8124 0.2886 0.5768 0.9978 0.8899 0.9723 0.9567
19.631 0.0802 −1.0016 1.4968 1.8541 0.2782 0.6162 0.9983 0.7980 0.9675 0.9488

Fig. 7. The compressive meridian and the plane-stress cross-section of the yield surface for different
locations of the triaxial compression test used for calibration: αT = 0.1, αBC = 1.16, αBS = 1.25,

B = 0.2σC

Comparisons of the proposed criterion for the recommended calibration data with predictions
of Lubliner’s criterion and Podgórski’s parabolic criterion are carried out. The deviatoric cross-
-sections of the surfaces are presented in Fig. 11, whereas the plane stress cross-sections are
given in Fig. 12.
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Fig. 8. The compressive meridians of the yield surface for: αT = 0.1, αBC = 1.16, αBS = 1.25,
B = 0.2σC and 1) αTC = 12.3778, η = 2.8555; 2) αTC = 0.26, η = 9.4976 versus experimental data

Fig. 9. The tensile and shear meridians of the yield surface for αT = 0.1, αBC = 1.16, αBS = 1.25,
B = 0.2σC and αTC = 0.26, η = 9.4976 versus experimental data

Fig. 10. Plane stress cross-sections versus experimental data (Kupfer et al., 1969)
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Curves of the deviatoric cross-sections indicate basic differences between the compared cri-
teria. The proposed criterion exhibits almost a triangular section for a low confinement and a
rounded hexagonal section for a higher hydrostatic pressure. The effect of regularisation of the
Lubliner criterion is clearly seen for both singularities along the tensile and compressive meri-
dians and the null maximum principal stress curve. Prediction of the Podgórski criterion results
in more triangular deviatoric sections than the proposed.

In the case of the plane stress cross-sections, comparisons exhibit better accuracy of the
proposed model than the Lubliner criterion and similar accuracy as the Podgórski parabolic
criterion, see Fig. 10 and Fig. 12. The results for two sets of calibration data (recommended)
are shown in Fig. 12. Depending on the selection of the location of the triaxial compression test,
a different order of curves for the plane stress is reported when the proposed and Podgórski
criteria predictions are plotted.

Fig. 11. Comparison of deviatoric cross-sections of the criterion (left) for B = 0.2σC with the Lubliner
criterion (central) and the Podgórski parabolic criterion (right): αTC = 6.722, η = 2.835,
ξTC = −18.73σC. 1) ξ = ξT , 2) 0.5ξC , 3) ξC , 4) ξBS , 5) ξBC , 6) ξTC/9. σi = σi

√

2/3

Fig. 12. Comparison of the criterion (proposed) for B = 0.2σC with the criteria of Lubliner (L) and
Podgórski (P) for the plane stress cross-section and for: αTC = 0.260 and η = 9.498
(ξTC = −1.726σC) (left); αTC = 6.722 and η = 2.835 (ξTC = −18.73σC) (right)

The proposed yield function, (2.2), is quite general when it comes to the deviatoric cross-
section shape. We have shown calibration for Podgórski functions (2.3), although any positive
shape functions fulfilling (2.5) are appropriate. The choice of the Podgórski functions was dic-
tated by its excellent properties – they are indefinitely differentiable and comply well with the
experimental data for concrete as well as allow one to control the proportions of norms of devia-
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tors for three meridians (compressive, tensile and shear). If needed, the corners of the deviatoric
cross-sections can be sharpened by using square roots of the Podgórski functions.

Function (2.2) can be used to describe yield initiation or failure not only for concrete, but
also for various types of soils and rocks. For this reason, the shape functions can be chosen from
an extensive range of proposals existing in the literature on the subject. Generally, they can be
divided into two groups. The first are shape functions involving trigonometric functions of mul-
tiples of 3Θ, which are most commonly used, including the Ottosen and Podgórski proposition,
but also functions discussed by van Eekelen (1980), Ehlers (1995), Gudehus (1973), Argyris et al.
(1974), Raniecki and Mróz (2008), Jemioło and Szwed (1999) among others. The second group
are functions composed of segments connected at selected meridians, with the most recognised
function of Willam and Warnke (1975) consisting of segments of an ellipse. The disadvantage of
those shape functions is often the inability to find the first or the second derivative of the yield
function in junction zones. Making use of an appropriate shape function can extend the range
of application of the yield condition.

5. Conclusions

The presented modification of the Lubliner condition allows for a better adjustment of the
yield surface to available experimental data than the original yield condition (Lubliner et al.,
1989). The undeniable advantage is elimination of most singularities which are troublesome to
deal with during structural analysis. Introduction of one free parameter B into the proposed
criterion removes singularity on the line of the null maximum principal stress reported in the
Lubliner criterion, whereas the choice of appropriate shape functions allows one to smoothen
the zones of compressive and tensile meridians. Additionally, the closed formulae describing
material parameters facilitate the application of the criterion. The drawbacks of the proposed
yield surface are limitations concerning convexity, although for typical data for concrete they
are of no consequence. It was shown that using this criterion, one can improve the agreement
of the prediction with available experimental results over a wide range of data. The second
inconvenience is singularity at the apex that can be removed at the expense of adding an extra
parameter, compare Szwed and Kamińska (2017).

Similarly as in the case of Lubliner criterion, different shape functions for deviatoric cross-
sections are used for the triaxial compression zone and for at least one positive principal stress
zone. Between uniaxial and equal biaxial compression, there is a transition zone from one to
another shape function, reflecting physical transition between failure modes. For the chosen
shape functions, it is possible to calibrate the criterion analytically based on typical experimental
tests: uniaxial tension and compression, equal biaxial compression, triaxial compression and pure
shear located on compressive, tensile and shear meridians. The regularisation parameter is left
undetermined to control smoothness of meridians (close to piecewise linear) in the zone of passing
the null maximum principal stress curve. In total, depending on the shape function used, the
yield condition involves seven or nine parameters.

The proposed plasticity surface exhibits desirable features reported in experiments. The
meridians are appropriately curved, smooth and convex defining an open yield surface. The
deviatoric cross-sections are smooth and convex being nearly triangular for a low confinement
but becoming more circular (rounded hexagons) for increasing compressive stresses.

Multiple modifications of the Concrete Damaged Plasticity model of Abaqus are present in
the relevant literature, usually postulating a novel description of damage. The proposed yield
function could be easily incorporated into the model, improving its flexibility and reducing the
difficulties connected to singularities as the original non-associative flow rule is already smooth.



338 A. Szwed, I. Kamińska

References

1. Abaqus 6.11 Theory Manual, 2011, Simulia

2. Argyris J.H., Faust G., Szimmat J., Warnke E.P., Willam K.J., 1974, Recent develop-
ments in the finite element analysis of prestressed concrete reactor vessels, Nuclear Engineering
and Design, 28, 42-75, DOI: 10.1016/0029-5493(74)90088-0

3. Bigoni D., Piccolroaz A., 2004, Yield criteria for quasibrittle and frictional materials, Inter-
national Journal of Solids and Structures, 41, 2855-2878, DOI: 10.1016/j.ijsolstr.2009.06.006

4. Drucker D.C., Prager W., 1952, Soil mechanics and plastic analysis or limit design, Quarterly
of Applied Mechanics, 10, 157-165

5. Ehlers W., 1995, A single-surface yield function for geomaterials, Archives of Applied Mechanics,
65, 246-259, DOI: 10.1007/BF00805464

6. Gabet T., Malecot Y., Daudeville L., 2008, Triaxial behaviour of concrete under high stress:
Influence of the loading path on compaction and limit states, Cement and Concrete Research, 38,
403-412, DOI: 10.1016/j.ijsolstr.2008.10.015

7. Gudehus G., 1973, Elastoplastic constitutive relations for sand (in German), Ingenieur-Archiv,
42, 151-169

8. Jemioło S., Szwed A., 1999, On application of convex functions to model failure of isotropic
materials. Proposition of yield conditions for metals (in Polish), Prace Naukowe Politechniki War-
szawskiej, 133, 5-51

9. Kupfer H., Hilsdorf H.K., Rusch H., 1969, Behavior of concrete under biaxial stresses, ACI
Journal, 66, 656-666

10. Lubliner J., Oliver J., Oller S., Onate E., 1989, A plastic-damage model for concrete,
International Journal of Solids and Structures, 25, 299-326, DOI: 10.1016/0020-7683(89)90050-4

11. Mills L.L., Zimmerman R.M., 1970, Compressive strength of plain concrete under multiaxial
loading conditions, ACI Journal, 67, 802-807

12. Ottosen N.S., 1977, A failure criterion for concrete, Journal of the Engineering Mechanics Divi-
sion, 103, 527-535

13. Podgórski J., 1984, Limit state condition and dissipation function for isotropic materials,Archives
of Mechanics, 36, 323-342

14. Raniecki B., Mróz Z., 2008, Yield or martensic phase transformation condition and dissipation
functions for isotropic pressure insensitive alloys exhibiting SD effects, Acta Mechanica, 195, 81-
102, DOI: 10.1007/s00707-007-0544-7

15. Szwed A., Kamińska I., 2017, Modification of concrete damaged plasticity model. Part I:
Modified plastic potential, MATEC Web of Conferences, 117, 00160, DOI: 10.1051/matec-
conf/201711700160

16. Szwed A., Kamińska I., 2019, Yield criteria for concrete built of deviatoric and meridional
shape functions, [In:] Theoretical Foundations of Civil Engineering, IX, Mechanics of Materials
and Structures, A. Szwed, I. Kamińska (Edit.), 85-94, Publishing House of Warsaw University of
Technology

17. Van Eekelen H.A.M., 1980, Isotropic yield surface in three dimensions for use in so-
il mechanics, International Journal for Numerical and Analytical Methods, 4, 89-101, DOI:
10.1002/nag.1610040107

18. Willam K.J., Warnke E.P., 1975, Constitutive models for triaxial behavior of concrete, Proce-
edings of the International Association for Bridge and Structural Engineering, 19, 1-30

Manuscript received October 10, 2019; accepted for print December 5, 2019


